Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 388: 129730, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37704089

RESUMEN

To address the issue of floating and loss of floc sludge caused by gas production in anaerobic ammonia oxidation (anammox) reactors, this study proposes a limited nitrite supply strategy to regulate gas production during the settling and enhance sludge retention. Results indicate that the effluent suspended solids in the anammox reactor can be reduced to as low as 0.11 g/L under specific feast-starvation conditions. Even under long-term intermittent nitrite-starvation stress, the maximum growth rate of Candidatus_Kuenenia can still reach 0.085d-1, with its abundance increasing from 0.47% to 8.83% within 69 days. Although the combined effects of starvation and sedimentation would lead to a temporary decrease in anammox activity, this reversible inhibition can be fully restored through substrate intervention. The limited nitrite supply strategy promotes the sedimentation of anammox sludge without significantly affecting its growth rate, and effective sludge retention is crucial for enriching anammox sludge during initial cultivation.

2.
J Environ Manage ; 345: 118707, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536132

RESUMEN

Composting is a common and effective strategy for reducing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from animal manure. However, it is unclear whether the advantages of composting for the control of ARGs and ARB can be further increased in land application. This study investigated the fate of ARB and ARGs after land application of swine-manure composts (SMCs) to three different soil types (red soil, loess and black soil). The results showed that although the SMCs caused an increase in the abundance of total ARGs in the soil in the short period, they significantly reduced (p < 0.01) the abundance of total ARGs after 82 days compared to the control. The decay rate of ARGs reflected by the half-life times (t1/2) varied by soil type, with red soil being the longest. The SMCs mainly introduced ermF, tetG and tetX into the soils, while these ARGs quickly declined to the control level. Notably, SMCs increased the number of ARB in the soils, especially for cefotaxime-resistant bacteria. Although SMCs only affected the microbiome significantly during the early stage (p < 0.05), it took a much longer time for the microbiome to recover compared to the control. Statistical analysis indicated that changes in the microbial community contributed more to the fate of ARGs during SMCs land application than other factors. Overall, it is proposed that the advantages of ARGs control in the composting process for swine manure can be further increased in land application, but it can still bring some risks in regard to ARB.


Asunto(s)
Compostaje , Suelo , Animales , Porcinos , Genes Bacterianos , Estiércol/análisis , Antagonistas de Receptores de Angiotensina , Microbiología del Suelo , Inhibidores de la Enzima Convertidora de Angiotensina , Bacterias/genética , Antibacterianos/farmacología
3.
J Hazard Mater ; 455: 131561, 2023 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-37167875

RESUMEN

Rainfall events are responsible for the accelerated transfer of antibiotic-resistant contaminants to receiving environments. However, the specific profiles of various ARG types, including intra- and extracellular ARGs (iARGs and eARGs) responding to season rainfall needed more comprehensive assessments. Particularly, the key factors driving the distribution and transport of iARGs and eARGs have not been well characterized. Results revealed that the absolute abundance of eARGs was observed to be more than one order of magnitude greater than that of iARGs during the dry season in the reservoir. However, the absolute abundance of iARGs significantly increased after rainfall (p < 0.01). Meanwhile, seasonal rainfall significantly decreased the diversity of eARGs and the number of shared genes between iARGs and eARGs (p < 0.01). Results of structural equation models (SEM) and network analysis showed the rank and co-occurrence of influencing factors (e.g., microbial community, MGEs, environmental variables, and dissolved organic matter (DOM)) concerning the changes in iARGs and eARGs. DOM contributed majorly to eARGs in the reservoir and pathogens was responsible for eARGs in the river during the wet season. Network analysis revealed that the tnp-04 and IS613 genes-related MGEs co-occurred with eARGs in the dry and wet seasons, which were regarded as potential molecular indicators to shape eARGs profiles in urban rivers. Besides, the results demonstrated close relationships between DOM fluorescence signatures and two-typed ARGs. Specifically, humic acid was significantly and positively correlated with the eARGs in the reservoir during the wet season, while fulvic acid-like substances exhibited strong correlations of iARGs and eARGs in the river during the dry season (p < 0.01). This work provides extensive insights into the potential effect of seasonal rainfall on the dynamic distribution of iARGs and eARGs and the dominance of DOM in driving the fate of two-typed ARGs in urban river systems.


Asunto(s)
Antibacterianos , Ríos , Antibacterianos/farmacología , Estaciones del Año , Genes Bacterianos , Farmacorresistencia Microbiana/genética
4.
Bioresour Technol ; 374: 128783, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36828226

RESUMEN

Anaerobic ammonium oxidation (anammox) is a potential process to achieve the neutralization of energy and carbon. Due to the low temperature and variation of municipal sewage, the application of mainstream anammox is hard to be implemented. For spreading mainstream anammox in practice, several key issues and bottlenecks including the start-up, stable NO2--N supply, maintenance and dominance of AnAOB with high activity, prevention of NO3--N buildup, reduction of sludge loss, adaption to the seasonal temperature and alleviation of COD impacts on AnAOB are discussed and summarized in this review in order to improve its startup, stable operation and resilience of mainstream anammox. Hence a combined biological nitrogen removal (CBNR) system based on conventional denitrification, shortcut nitrification-denitrification, Partial Nitritation and partial Denitrification combined Anammox (PANDA) process through the management of organic matter and nitrate is proposed correspondingly aiming at adaptation to the variations of seasonal temperature and pollutants in influent.


Asunto(s)
Compuestos de Amonio , Desnitrificación , Aguas Residuales , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Oxidación-Reducción , Nitrificación , Aguas del Alcantarillado , Nitrógeno
5.
Huan Jing Ke Xue ; 43(7): 3708-3717, 2022 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-35791554

RESUMEN

This study was based on the pilot one-stage combined partial nitritation and ANAMMOX process (CPNA), using data mining and analysis of 16S rRNA high-throughput sequencing data of activated sludge in the process of sludge bulking and recovery, combined with PISCRUSt2. The function prediction analysis aimed to reveal the microbial community changes and the characteristics of nitrogen metabolism and carbon metabolism at different stages of sludge bulking and recovery of the one-stage CPNA process. The results of the study showed that the microbial α-diversity in the sludge bulking and recovery process first increased and then declined. The relative abundance of Nitrosomonas, Candidatus_Brocadia, and Thaurea decreased in the sludge-bulking stage from 12.36%, 11.86%, and 0.272% to 5.97%, 8.30%, and 0.061%, whereas the relative abundance of Candidatus Kuenenia remained stable. The relative abundance of Levilinea, Longilinea, and Turicibacter increased from 0.031%, 0.018%, and 0.009% to 0.055%, 0.025%, and 0.033%. The PICRUSt2 function prediction analysis results showed that there were a total of 47 functional enzyme genes involved in nitrogen metabolism, of which nitrification, denitrification, dissimilative nitrate reduction (DNRA), assimilation nitrate reduction (ANRA), and nitrogen fixation were relatively abundant. The degrees of each had changed. During the sludge-bulking stage, the relative abundance of the ammonia monooxygenase gene (pmoABC-amoABC) and the hydroxylamine dehydrogenase gene hao decreased, whereas the relative abundance of the nitrate-reducing gene increased at the initial stage and then showed a downward trend. Carbon metabolism analysis showed that sodium acetate had a promoting effect on the heterotrophic growth of the CPNA process, but the energy metabolism and glucose production of sodium acetate were not active.


Asunto(s)
Actinobacteria , Microbiota , Oxidación Anaeróbica del Amoníaco , Bacterias , Carbono/metabolismo , Microbiota/genética , Nitratos/metabolismo , Nitrógeno/metabolismo , ARN Ribosómico 16S/genética , Aguas del Alcantarillado , Acetato de Sodio/metabolismo
6.
Membranes (Basel) ; 11(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34832123

RESUMEN

The problem of membrane fouling is a key factor restricting the application of the membrane bioreactor (MBR) in the partial nitrosation (PN) and anaerobic ammonia oxidation (anammox) processes. In this study, the pilot-scale continuous flow MBR was used to start up the partial nitrosation process in order to investigate the change trend of mid-transmembrane pressure (TMP) in the process of start-up, which was further explored to clarify the membrane fouling mechanism in the pilot-scale reactor. The results showed that the MBR system was in a stable operating condition during the partial nitrosation operation and that the online automatic backwash operation mode is beneficial in alleviating membrane fouling and reducing the cost of membrane washing. Particular attention was paid to the influence trend of free ammonia (FA)on membrane fouling, and it was found that the increase in FA concentration plays the most critical role in membrane fouling. The increase in FA concentration led to an increase in the extracellular polymer (EPS), dissolved microorganism product (SMP) and soluble chemical oxygen demand (SCOD) concentration. FA was extremely significantly correlated with EPS and SCOD, and the FA concentration was approximately 20.7 mg/L. The SCODeff (effluent SCOD concentration) concentration was approximately 147 mg/L higher than the SCODinf (influent SCOD concentration) concentration. FA mainly affects membrane fouling by affecting the concentration of EPS and SCOD.

7.
Huan Jing Ke Xue ; 42(11): 5472-5480, 2021 Nov 08.
Artículo en Chino | MEDLINE | ID: mdl-34708986

RESUMEN

Two types of full-scale reactors(SBR, 116.6 m3, activated sludge process; SBBR, 64.8 m3, activated sludge and biofilm process) were inoculated with activated sludge from a swine wastewater treatment plant. The effect of NO2--N concentration on ANAMMOX was investigated in the reactors during the start-up of the combined partial nitritation and ANAMMOX(CPNA) process by controlling the dissolved oxygen(DO), aeration mode, and NaNO2 dosing. The results showed that the SBBR was more suitable for rapid start-up of partial nitritation under the same operation conditions. Despite NO2--N inhibition(100-129 mg·L-1, 7 days), the ANAMMOX process was successfully started by the SBR on day 39, and the total nitrogen removal rate and efficiency(TNRR and TNRE) were 0.069 kg·(m3·d) -1 and 23.3%, respectively. However, 17 days of NO2--N inhibition(129-286 mg·L-1) had an unrecoverable effect on ANAMMOX activity in the SBBR. By adding NaNO2, the SBR successfully started the CPNA process on day 77. The TNRR, TNRE, and activity of ANAMMOX from day 51 to 77 increased rapidly from 0.070 to 0.336 kg·(m3·d) -1, 16.0% to 52.2%, and 0.012 to 0.307 kg·(kg·d) -1, respectively. The gene copy concentration of AOB and ANAMMOX bacteria in the SBR increased from the original 8.06×106 and 4.42×104 copies·mL-1 to 1.02×109 and 1.77×107 copies·mL-1, respectively, which indicated that the rapid enrichment of AOB and ANAMMOX bacteria in the SBR was achieved mainly by controlling DO, aeration mode, and NaNO2 dosing. Reasonable nitrite regulation is the key for the start of the CPNA process.


Asunto(s)
Compuestos de Amonio , Purificación del Agua , Animales , Reactores Biológicos , Nitritos , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Porcinos , Aguas Residuales
8.
Bioresour Technol ; 329: 124904, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33676354

RESUMEN

An integration of two processes, magnetic coagulation (MC) and short-cut biological nitrogen removal (SBNR), coupled with a sequencing batch membrane bioreactor (SMBR) controlled by an automatic real-time control strategy (RTC), was developed to treat different characteristics of high strength wastewater. The treatment efficiency and microbial community-diversity of the proposed method was evaluated and investigated using swine wastewater and food waste (FW) digestate. The MC showed high removal of TSS (89.1 ± 1.5%, 92.21 ± 1.8%), turbidity (90.58 ± 2.1%, 95.1 ± 2.1%), TP (88.5 ± 1.9%, 92.1 ± 1.5%), phosphate (87.76 ± 1.6%, 91.22 ± 1.5%), and SMBR achieved stable and excellent removal of COD (96.05 ± 0.2%, 97.39 ± 0.2%), TN (97.30 ± 0.3%, 97.44 ± 0.3%) andNH4+-N (99.07 ± 0.2%, 98.54 ± 0.2%) for swine wastewater and FW digestate, respectively. The effluent COD andNH4+-N concentrations were found to meet their discharge standards. The microbial community comparison showed similar diversity and richness, and genus Diaphorobacter and Thaurea were dominant in denitritation, and Nitrosomonas was dominant in nitritation treating both swine wastewater and FW digestate.


Asunto(s)
Eliminación de Residuos , Aguas Residuales , Animales , Reactores Biológicos , Desnitrificación , Alimentos , Fenómenos Magnéticos , Nitrógeno , Porcinos , Eliminación de Residuos Líquidos
9.
Bioresour Technol ; 329: 124906, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33662855

RESUMEN

In order to enhance nitrogen removal through anammox process in the full-scale swine wastewater treatment plant, an innovative regulation strategy of nitrate-based carbon dosage and intermittent aeration was developed to apply the combined biological nitrogen removal process in a full scale anaerobic-anoxic-oxic (A2/O) system. TN removal efficiency reached at 65.5 ± 6.0% in Phase 1 with decreasing external carbon dosage in influent due to the reduction of return nitrate concentration, and it increased to 83.5 ± 6.7% when intermittent aeration was adopted in oxic zone and external carbon source was stopped adding into influent in Phase 2. As a result, the energy consumption for the swine wastewater treatment decreased from 1.93 to 0.9 kW h/m3 and 4.18 to 2.57 kW h/kg N, respectively. Microbial community analysis revealed that the average abundances of Candidatus Brocadia increased from 0.76% to 2.43% and removal of TN through anammox increased from 39% to 77%.


Asunto(s)
Desnitrificación , Purificación del Agua , Animales , Reactores Biológicos , Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Porcinos , Aguas Residuales
10.
Membranes (Basel) ; 11(2)2021 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-33498712

RESUMEN

A high concentration of suspended solids (SS) in swine wastewater reduces the efficiency of the biological treatment process. The current study developed a short-cut combined magnetic coagulation (MC)-sequence batch membrane bioreactor (SMBR) process to treat swine wastewater. Compared with the single SMBR process, the combined process successfully achieved similarly high removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen (NH4+-N), and total phosphorous (TP) of 96.0%, 97.6%, 99.0%, and 69.1%, respectively, at dosages of 0.5 g/L of poly aluminium chloride (PAC), 2 mg/L of polyacrylamide (PAM), and 1 g/L of magnetic seeds in Stage II, and concentrations of TN, COD, and NH4+-N in effluent can meet the discharge standards for pollutants for livestock and poultry breeding (GB18596-2001, China). The nitrogen removal loading (NRL) was increased from 0.21 to 0.28 kg/(m3·d), and the hydraulic retention time (HRT) was shortened from 5.0 days to 4.3 days. High-throughput sequencing analysis was carried out to investigate microbial community evolution, and the results showed that the relative abundance of ammonia-oxidizing bacteria (AOB) in the SMBR increased from 0.1% without pre-treatment to 1.78% with the pre-treatment of MC.

11.
Bioresour Technol ; 319: 124118, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32957047

RESUMEN

The proton pump is a convincing mechanism for ammonia inhibition in anaerobic digestion, which explained how the ammonia accumulated intercellularly due to diffusion of free ammonia. Proton pump inhibitor (PPI) was dosed for mitigating the accumulation in anaerobic digestion with ammonia stress, with respect to kinetics. Results show PPI inhibited ß-oxidation of fatty acids by targeting ATPase in anaerobic digestion with ammonia stress. Alternatively, PPI stimulated syntrophic acetate oxidization. Random forest located key genera as syntrophic consortia. Methane increased 18.72 ± 7.39% with 20 mg/L PPI at the first peak, consistent with microbial results. The deterministic Gompertz kinetics and stochastic Gaussian processes contributed 97.63 ± 8.93% and 2.37 ± 8.93% in accumulated methane production, respectively. Thus, the use of PPI for anaerobic digestion allowed mitigate ammonia inhibition based on the mechanism of proton pump, facilitate intercellularly ammonia accumulation, stimulate syntrophic consortia, and eliminate uncertainty of process failure, which resulted in efficient methane production under ammonia stress.


Asunto(s)
Amoníaco , Microbiota , Anaerobiosis , Reactores Biológicos , Cinética , Metano , Inhibidores de la Bomba de Protones
12.
Bioresour Technol ; 320(Pt A): 124297, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33137641

RESUMEN

This study demonstrated the feasibility of anaerobic ammonia oxidation (anammox) served as tertiary nitrogen removal process. An upflow fixed-bed reactor (UFBR) pre-inoculated with anammox bacteria (AnAOB) followed an anoxic/oxic (A/O) reactor treating magnetic-coagulation pretreated municipal wastewater. When bypassing 15% of influent into UFBR, UFBR removed 5.37 mg-TN/L contributing to 23.4% on total TN removal, in which the combination of partial nitritation and partial denitrification with anammox was main nitrogen removal pathway. Relatively low concentrations of NH4+-N and anaerobic environment promoted the growth of ammonia oxidizing archaea (AOA) in the inner-layer of biofilm in UFBR. The cooperation of AOA and ammonia-oxidizing bacteria (AOB) with AnAOB was achieved, with AOA, AOB, and AnAOB abundances of 0.01-0.32%, 0.25-0.44%, and 0.77-2.18% on the biofilm, respectively. Metagenomic analysis found that although AOB was the main NH4+-N oxidizer, archaeal amo gene on biofilm increased threefold during 90 days' treatment.


Asunto(s)
Amoníaco , Nitrógeno , Anaerobiosis , Reactores Biológicos , Desnitrificación , Oxidación-Reducción , Aguas Residuales/análisis
13.
Waste Manag ; 118: 452-462, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32977305

RESUMEN

Relieving from ammonia inhibition and enhancing the utilization of thermodynamically unfavorable propionate are crucial for methane harvest in the high solid anaerobic digestion (HSAD) of ammonia-rich swine manure. In this study, the potential of dosing zero-valent iron (ZVI, 150 um) for enhancing the methanogenesis to resist total ammonia (TAN) over 5.0 g-N·L-1 was investigated via batch experiments under mesophilic condition. The cumulative methane production was enhanced by 22.2% at ≥160 mM ZVI dosage and the HSAD duration was further shortened by 50.6% at ≥320 mM ZVI dosage. The enhanced methanogenesis was mainly resulted from the full utilization of propionate and the accelerated collapse of posterior-biodegradable organics which might be driven by ZVI. Results of microbial community and qPCR (mcrA) showed that ZVI might trigger the blooming of Methanosarcina (from 27.9% to 78.3%) and Syntrophomonas (0.5% to 3.7%) and attribute to their possible direct interspecies electron transfer (DIET) to enhance propionate utilization. Besides, the main methanogenesis might remain in the effective aceticlastic pathway even under free ammonia (FAN) almost 1.0 g-N·L-1 because syntrophic acetate oxidizing bacteria (SAOB) decreased to almost none at 320 mM ZVI dosage. Dosing ZVI could relieve HSAD from TAN inhibition and more dosage was required to resist FAN inhibition.


Asunto(s)
Amoníaco , Estiércol , Anaerobiosis , Animales , Reactores Biológicos , Hierro , Metano , Porcinos
14.
Sci Total Environ ; 742: 140542, 2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-32623174

RESUMEN

Stable production of nitrite is an essential technical challenge for mainstream anaerobic ammonia oxidation (Anammox). Due to difficulties in the stable inhibition of nitrite oxidizing bacteria (NOB) and maintenance of long-term partial nitritation (PN), integrated multiple, rather than a single, controlling strategies were preferred especially in a continuous-flow treatment system. A mathematically model was developed to evaluate effects of integrated multiple-strategies on ammonia oxidizing bacteria (AOB) and NOB. Through experimental study and model simulation, intermittent aeration and low SRT (3.5 d) resulted in unstable nitrite accumulation. Integrated multiple-strategies of intermittent aeration, low SRT (3.5 d) and bioaugmentation achieved nitrite accumulation rate of 81% and NO2--N/NH4+-N ratio in effluent of 1.29, which was preferable for further anammox process. Meanwhile, the richness and diversity of microbial community increased due to the bioaugmentation. The AOB/NOB ratio increased from 13.8 to 34.1 which facilitated nitrite accumulation. In combination with bioaugmentation, the observed growth rates of AOB and NOB increased from -0.0835 and -0.0282 to 0.0434 and 0.0127 d-1, respectively, which promoted AOB outcompeting NOB in the mixed liquid.


Asunto(s)
Amoníaco , Aguas Residuales/análisis , Reactores Biológicos , Nitritos , Nitrógeno , Oxidación-Reducción
15.
Bioresour Technol ; 315: 123837, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32702579

RESUMEN

A challenge during the startup of the combined partial nitritation and anammox process is how to balance dissolved oxygen control and nitrite accumulation for converting partial nitritation into anammox, maintaining stable partial nitritation and promoting growth of anammox bacteria. An innovative regulation strategy of nitrite dosing and dissolved oxygen control in this study was developed to achieve the rapid startup of a full-scale combined partial nitritation and anammox reactor within 77 days and the total nitrogen removal rate of reactor was 0.097 kg N/kgMLSS·d-1, and the activity and gene copy concentration of anammox bacteria reached 0.307 kg N/kgMLVSS·d-1 and 7.79 × 109 copies/gMLVSS, respectively. Microbial community analysis revealed that Candidatus_Kuenenia and Nitrosomonas were the dominant nitrogen transformation bacteria with an abundance of 2.49% and 14.86%, respectively. This study offers a new method for rapid startup and spreading application of the full-scale anammox process.


Asunto(s)
Nitritos , Oxígeno , Animales , Reactores Biológicos , Nitrógeno , Nitrosomonas , Oxidación-Reducción , Porcinos
16.
Sci Total Environ ; 707: 135648, 2020 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-31780172

RESUMEN

Nitrate built-up is a serious operational difficulty in one-stage partial nitritation anammox (PN/A) process. To investigate an effective method for in-situ restoration, hydroxylamine (NH2OH) and hydrazine (N2H4) of 2 mgN/L were dosed in PN/A process with nitrate built-up in a comparative study. NH2OH treatment showed better performances on TN removal and nitrate reduction than N2H4 and blank control. Through 104 days' addition of NH2OH, MRNN (mole ratio of NO3--N production to NH4+-N removal) was decreased from 70% to 19.91%; TN removal was increased from 0.01 to 0.18 kgN/(m3 d). After stopping the chemical addition, nitrate rebounded for N2H4 treatment, but the restoration effect was stable and persistent for NH2OH. NH2OH addition resulted in a low reductive potential (-250 mV) and exerted strong inhibitions on nitrite oxidizing bacteria activities. Additionally, rapid enhancement of ammonia oxidizing bacteria activities, functional gene (hao) and Nitrosomonas gave rise to the restoration of PN/A with NH2OH addition.


Asunto(s)
Hidrazinas/química , Hidroxilamina/química , Reactores Biológicos , Nitrógeno , Oxidación-Reducción
17.
Environ Int ; 133(Pt B): 105183, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31675559

RESUMEN

Swine wastewater is an important reservoir of spread antibiotic resistance to the environment. Intra- and extracellular antibiotic resistance genes (iARGs and eARGs) were quantified during two typical swine wastewater treatment processes including a sequencing membrane bioreactor (SMBR) at pilot-scale and anaerobic-anoxic-oxic (A2O) at full-scale. The concentrations of iARGs and eARGs in raw wastewater were 3.42E+09 and 3.79E+07 copies/mL, respectively. The compositions were different between iARGs and eARGs. SMBR showed 0.63 log higher removals in the concentrations of iARG than A2O, while similar removal effects (3.01-3.44 log copies/mL) of eARGs were performed by the two processes. It suggested that membrane separation had advantages in the concentration removals of iARG rather than eARG. sul1 took the dominance in eARGs in effluent and had positive correlations with intI1, which indicated the risk of horizontal gene transfer of eARGs after wastewater discharge. Microbial community structures were estimated by 16S rRNA gene sequencing with both intra- and extracellular DNA (iDNA and eDNA). Compared between the effluent samples of the two treatment processes, microbial community structures estimated by iDNA had great differences, however which were similar for eDNA. Microbial community and water-quality parameters were the major influencing factors on ARG occurrences during swine wastewater treatment.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Microbiana , Microbiota , Animales , Reactores Biológicos , ADN Bacteriano/genética , Farmacorresistencia Microbiana/genética , Genes Bacterianos , ARN Ribosómico 16S/genética , Porcinos , Aguas Residuales
18.
Environ Int ; 130: 104906, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31203029

RESUMEN

The process of sludge bio-drying has been adopted in response to the increasing amount of residual sewage sludge. It has been demonstrated that sludge bio-drying effectively reduces both antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), whereas ermF, tetX, and sulII become enriched in response to the dynamic development of the microbial community. The present study further demonstrated that the land application of sludge bio-drying products under current application rate did not cause an increase in the abundance of quantified ARGs in the soil but the persistence of ARB should be paid attention. Although land application introduced ermF, tetX, and tetG into the soil, these soon decreased to control levels. Furthermore, the decay rate varied between soil types, with red soil being the most persistent based on kinetics modeling. The fate of ARGs could also be attributed to the dynamics of the microbial community during land application, and the genus Parasegetibacter, which can degrade extracellular DNA, might play a key role in the control of ARGs. In summary, sludge bio-drying following land application could constitute an effective means of controlling the spread of ARGs, and microbial community changes contributed the most to the fate of the ARGs during the entire treatment chain (residual sewage sludge → bio-drying process → land application).


Asunto(s)
Farmacorresistencia Microbiana/genética , Genes Bacterianos/genética , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/métodos , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/genética
19.
Chemosphere ; 229: 461-470, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31091487

RESUMEN

Anaerobic digestion (AD) is regarded as a promising technology in energy recovery and the spread mitigation of antibiotic resistance. However, the performance of AD is dependent on various factors, and substrate type is one of the most important. In this study, the fate of antibiotic resistance genes (ARGs) response to the substrate types was investigated, and three typical environmental reservoirs of ARGs (pig manure, chicken manure and sewage sludge) were selected. The role of substrate microbial community on the fate of ARGs was clarified through the comparison between the AD of the substrates with and without a prior autoclave-disinfected step. Results showed that substrate types significantly influenced the fate of ARGs, while the influence from the substrate microbial community was limited. The concentration of antibiotics, the horizontal gene transfer reflected by intI1 and co-selection from heavy metals reflected by metal resistance genes (MRGs) were all reduced effectively. Microbial community varied from substrate types and dominated the ARGs fate concerning the standardized total effects through the mantel test and SEM analysis. The fate of tetX, ermF, tetM and ermB was mainly determined by the physicochemical parameters and the phyla of Firmicutes and Bacteroides. The phyla of Actinobacteria, pcoA and czcA contributed most to the reduction of blaTEM and mcr-1, and the phyla of Proteobacteria, Chloroflexi, Synergistetes, Euryarchaeote, intI1 and merA correlated significantly with the fate of blaCTX-M, ereA, tetG and sulI. This study highlighted the importance of substrate types when considering the fate of ARGs during AD.


Asunto(s)
Farmacorresistencia Microbiana/genética , Estiércol/microbiología , Microbiota/genética , Eliminación de Residuos Líquidos/métodos , Anaerobiosis/efectos de los fármacos , Anaerobiosis/genética , Animales , Antibacterianos/análisis , Bacterias/efectos de los fármacos , Bacterias/genética , Pollos , Transferencia de Gen Horizontal , Genes Bacterianos/efectos de los fármacos , Estiércol/análisis , Metales Pesados/farmacología , Microbiota/efectos de los fármacos , Aguas del Alcantarillado/microbiología , Porcinos , Eliminación de Residuos Líquidos/instrumentación , beta-Lactamasas/genética
20.
Sci Total Environ ; 660: 1542-1554, 2019 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-30743946

RESUMEN

Due to many occurrences of the illegal addition, misuse and abuse of antibiotics in the swine industry in China, high-resolution mass spectrometry (HRMS) was used to screen and identify these materials in two swine wastewater treatment systems (Swine farm 1: anaerobic digestion - lagoon treatment; Swine farm 2: anaerobic digestion - anoxic treatment - aerobic biological treatment). The results showed that 11 out of 115 antibiotics, including tetracyclines (tetracycline, oxytetracycline, chlortetracycline), sulfonamides (sulfadimidine (SDMD)), macrolides (clarithromycin, tilmicosin (TILM)), fluoroquinolones (ciprofloxacin, ofloxacin, enrofloxacin), ß­lactam (penicillin G), and lincosamides (lincomycin), were identified in the swine farms by screening and confirmation methods through HRMS. The quantification method was carried out using triple-quadrupole tandem mass spectrometry, and the recoveries of 11 analytes in the swine wastewater were above 50%. The investigation results showed that the amount of antibiotic residues during the cold season was much higher than that during the warm season. Among the antibiotics, tetracyclines (average of 58%) were the main antibiotic residues in the two swine farms, with TILM second (33%). Sulfonamides (SDMD) existed only in SF1 and accounted for 10% of the total antibiotic concentration. The average proportion of total antibiotics in the solid and liquid phases were 98.5% and 1.5%, respectively, indicating that antibiotics were mainly adsorbed onto solids, though only SDMD remained relatively high in the liquid phase (5.29%). The degradation data of most of the antibiotics detected in the liquid phase during the wastewater treatments well fitted the simple first-order kinetic model in both SF1 and SF2, and the half-lives of the analytes in SF2 were much shorter than those in SF1. After the wastewater treatment process, approximately 80% of the antibiotics could be removed, but sulfonamides remained at a relatively higher percentage and were the main antibiotics in the effluent (approximately 60%).


Asunto(s)
Antibacterianos/análisis , Granjas , Porcinos , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Animales , Antibacterianos/química , Semivida , Estaciones del Año , Espectrometría de Masas en Tándem , Temperatura , Contaminantes Químicos del Agua/química , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...